071.R58.Omni whell

Omni wheels or poly wheels, similar to mecanum wheels, are wheels with small discs around the circumference which are perpendicular to the rolling direction. The effect is that the wheel will roll with full force, but will also slide laterally with great ease. These wheels are often employed in holonomic drive systems.
A platform employing three omni wheels in a triangular configuration is generally called Kiwi Drive. The Killough platform is similar; so named after Stephen Killough’s work with omnidirectional platforms at Oak Ridge National Laboratory. Killough’s 1994 design used pairs of wheels mounted in cages at right angles to each other and thereby achieved holonomic movement without using true omni wheels.
They are often used in small robots. In leagues such as Robocup, many robots use these wheels to have the ability to move in all directions. Omni wheels are also sometimes employed as powered casters for differential drive robots to make turning faster. However, this design is not commonly used as it leads to Fishtailing.
Omniwheels combined with conventional wheels provide interesting performance properties, such as on a six wheel vehicle employing two conventional wheels on a center axle and four omniwheels on front and rear axles.
>link

068.R55. Lazer SuperSkin

Skin biomimicry applied to helmet design.
With over 80% of fatal motorcycle accidents due to head trauma, rotational head injury is currently seen as the greatest cause of brain damage or death for motorcyclists involved in road accidents. Manufactured by Lazer Designs and designed by U.K.-based Industrial Design Consultancy (IDC), a new helmet design promises to protect cyclists by simulating the way the human skull protects itself from rapid rotational injury.
The new helmet, named SuperSkin, tackles this directly using a special new technology that mimics nature’s own simple design – skull and skin. Superior in design compared to standard helmets, stringent tests show that the SuperSkin product design reduces rotational impact by an unprecedented 50% and the subsequent possibility of brain damage by 67.5%…
>link
>youtubek

067.R54. Robot biomimicry

Scientists at the University of California Berkeley are convinced they are offering a breakthrough in robot design. Their study of living organisms has offered insights which they’ve adapted to the world’s first robotic cockroach, or, Robo Roach. Graham discovers how the ingenuity of nature may help develop technology that could finally bring about the robot revolution.
>link

065.R52. Cockroach

…These researchers have used biomimicry of the cockroach, one of nature’s most successful species, to design and build sprawl-legged robots that can move very quickly (up to five body-lengths per second). In addition, these robots are very good at manoeuvring in changing terrain, and can continue forward motion when encountering hip-height obstacles or uphill and downhill slopes of up to 24 degrees. These types of small, fast robots could potentially be used for military reconnaissance, bomb defusion and de-mining expeditions.
Biomimetic robots are even being considered by NASA’s Institute for Advanced Concepts for use in exploring the planet Mars. While these ideas are only in the brainstorming phase, many researchers believe that only robots designed based on insect models would be able to generate enough lift in Mars’ low-density atmosphere to take off, hover and land to explore the Red Planet. However, one must bear in mind that the fluid dynamics of small insects are very different from that of large robots. Since tiny organisms interact with their fluid environment at different Reynold’s numbers (a value indicating the viscosity of the fluid relative to the size of the organism), the air through which they fly is relatively more viscous than it would be for a larger organism, like swimming through molasses as opposed to water. As a result, one cannot be certain that a large scale model of insect flight would be able to interact with the air in the same way as a real insect to enable flight (this problem would also be worsened by the thin atmosphere on Mars)…
>link

064.R51. Stickybot

 

Este robot escalador es la última versión de StickyBot de Stanford, pesa tres cientos gramos y puede subir un cristal a cuatro centímetros por segundo. Es impresionante como el robot suelta sus dedos del pie similar a como lo hacen las verdaderas salamandras. Uno de los problemas más grandes para los desarrolladores, ha sido tratar de emular los dedos del pie del animal los que naturalmente se adhieren a todo terreno.
>link
>youtube

061.R48. Control Solar. Biomimética

Análisis Solar, para demostrar el efecto de las costillas y espinas sobre el cactus. Realizado durante el solsticio de verano en Guadalajara, México. En la primera imagen, que tiene la forma del cactus sin la estructura de las costillas, se ve una gradación clara de luz solar de la cima al inferior, con la mayor protección en la parte inferior.
La segunda imagen muestra el efecto de las costillas en la luz solar directa. Claramente hay una mayor superficie protegida del sol en la parte inferior, así como significativas cerca de la cima; debido a la profundidad entre sus costillas.
La tercera imagen del cactus con las espinas, muestra una extensión similar de protección del sol alrededor de la base del cactus y los pequeños bolsillos de sombra en la base de las espinas. Cerca de la cima del cactus, donde hay mayor densidad de espinas, incrementa su auto – protección del sol. Claramente las costillas tienen un impacto directo sobre la protección del cactus de la luz solar directa.
Las espinas parecen no tener un impacto significativo en la protección del sol excepto cerca del ápice donde su densidad es mayor. En la actualidad, esta área también es cubierta de cabellos blancos que le proporcionan una cubierta más densa. Las costillas estructurales claramente tienen múltiples funciones.
Contiene el medio para realizar la fotosíntesis en el cactus, controla la extensión del volumen, y proporciona un cierto grado protección del sol a la parte inferior e interior de la planta.
>link

060.R47. Control Estructural. Biomimética

La imagen superior muestra un diagrama de vector del cactus sin paredes celulares bajo la presión interna extrema. La mayor deformación está sobre la zona central de las costillas, ya que ellos tienen el área más amplia y son los más flexibles.
La imagen debajo es el cactus con las paredes celulares bajo la misma presión. Esta imagen no muestra la misma deformación, porque casi toda la tensión está siendo absorbida por la resistencia a la torsión de las paredes celulares.
Por lo tanto, la importancia de la estructura celular del Echinocactus Grusonii es determinante en el funcionamiento estructural de la planta, demostrando que la función primaria de las costillas es el control de la expansión y no el apoyo estructural.
>link

059.R46. Solar Biomimicry

The flexible photovoltaics below not only capture the sun’s energy, but the flexibility of these photovoltaics permits energy to be collected from motion. The idea is taken from leaves moving in the wind. From the Copenhagen Institute of Interaction Design. After all, thousands of years of evolution can’t be wrong: if a more efficient design for gathering solar energy lay in developing huge slabs (see most existing solar panels installed on houses these days), trees ought to produce a single huge leaf! However, as trees very elegantly demonstrate, there are multiple forces at work in nature beyond the mandate to collect solar energy.
>link

058.R45. Biomimesis

Biomimesis o la innovación en diseño basada en la naturaleza.
La Biomimésis es el término más utilizado en literatura científica e ingeniería para hacer referencia al proceso de entender y aplicar a problemas humanos, soluciones procedentes de la naturaleza en forma de principios biológicos, biomateriales, o de cualquier otra índole. La naturaleza, el universo, le lleva al ser humano millones de años de ventaja en cualquier campo. Es por ello que es más ventajoso copiarla que intentar superarla, como es el caso del kevlar, incomparable a biotejidos como la tela de araña. Otro ejemplo simple, es la cabeza tractora de ciertos tren es de alta velocidad cuya forma es aerodinámica procedente de la forma de la cabeza de cierta especie de patos.
>link

057.R44. Metamorfosis

Metamorfosis (biología). Se llama metamorfosis a un proceso biológico por el cual un animal se desarrolla desde su nacimiento (pasado el desarrollo embrionario) hasta la madurez por medio de grandes y abruptos cambios estructurales y fisiológicos. No sólo hay cambios de tamaño y un aumento del número de células sino que hay cambios de diferenciación celular. Muchos insectos, anfibios, moluscos, crustáceos, cnidarios, equinodermos y tunicados sufren metamorfosis, la cual generalmente está acompañada de cambios en hábitat y comportamiento.
En sentido científico este término no se refiere a cambios generalizados del aspecto de las células o a episodios de crecimiento rápido. En los mamíferos el término es de uso familiar, no científico y es más bien impreciso.

056.R43. Shape Memory Polymers

What is Shape Memory Polymer?
Shape memory polymer (SMP) has only been around for a couple of decades. It has applications from deploying objects in space to manufacturing dynamic molds. Unlike shape memory alloys, SMP exhibits a radical change from a normal rigid polymer to a very stretchy elastic and back on command, a change which can be repeated without degradation of the material. The “memory,” or recovery, quality comes from the stored mechanical energy attained during the reconfiguration and cooling of the material.
>link

055.R42. Reflexive Systems

Reflexive composites, self-healing shape memory polymer (SMP) composites for aerostructures integrated into a structural health monitoring system, allow air vehicles to repair structural damage caused by events while in flight such as bird strikes and debris. Such an integrated system would extend the service life of the vehicle and allow it to land safely during an emergency, protecting both the vehicle and its passengers or payload.
Reflexive composites are a bio-inspired technology, mimicking a biological ability to identify and mitigate damage for increased survivability. This is accomplished through the integration of three emerging technologies: healable SMP composites, structural health monitoring (SHM), and intelligent controls.
>link

054.R41. Morphing Systems

The desire for multi-mission capability in military and civil air vehicle systems has created a need for technologies that allow for drastic wing shape changes during flight. Since most current aircraft are fixed-geometry, they represent a design compromise between conflicting mission segment performance requirements, such as high-speed cruise, low-speed loiter, and low turn radius maneuver. If a hybrid aircraft is designed to combine several flight profiles, the wing design must maximize overall efficiency of the anticipated mission. Through morphing, the aerodynamics of the aircraft can be adapted to optimize performance in each segment by changing areas such as the camber of the airfoils and the twist distribution along the wing.
Adapting the shape of wings in flight allows an air vehicle to perform multiple, radically different tasks by dynamically varying its flight envelope. The wing can be adapted to different mission segments, such as cruise, loitering, and high-speed maneuvering by sweeping, twisting, and changing its span, area, and airfoil shape. Morphing wing technology is considered to be a key component in next-generation unmanned aeronautical vehicles (UAVs) for military and commercial applications.
CRG successfully demonstrated the self-deploying capabilities of its Veritex™ (Veriflex®-based composite) material in the fabrication and deployment of a sub-scale, carbon fiber reinforced wing. The sub-scale wing was heated, collapsed, and rolled up into a tight package. Once cooled, the structure maintained the rolled up configuration until it was heated and deployed to achieve the memorized wing shape, as shown in the center of the figure below.
>link

053.R40. Morphing Structures

WHY? Morphing or shape changing structures can actively change their geometry in order to better adapt to exterior loading or to increase performance.
Nature is full of examples of morphing structures. Unlike a mechanism, which consists of stiff elements joined by kinematic links and actuated by exterior power sources, a morphing structure achieves its shape changing abilities from within, i.e. without the need for an external mechanism.
HOW? The aim is to develop structures that can change shape and can increase their surface area either through external or embedded actuation. The design challenge is that on one hand these structures need to carry loads i.e. must be stiff. Whilst on the other hand, to keep actuation forces reasonable, the structures must be compliant to allow easy deformation. This contradiction cannot be easily resolved with currently available materials.
Deployable structures e.g. rollable, foldable, inflatable and nested structures.
Extreme anisotropic materials e.g. corrugated structures, segmented structures.
Variable stiffness materials e.g. shape memory, flexible matrix composites.
>link

052.R39. Aerospace Vehicle

Aircraft of the future will not be built of traditional, multiple, mechanically connected parts and systems. Instead, aircraft wing construction will employ fully-integrated, embedded “smart” materials and actuators that will enable aircraft wings with unprecedented levels of aerodynamic efficiencies and aircraft control.
Able to respond to the constantly varying conditions of flight, sensors will act like the “nerves” in a bird’s wing and will measure the pressure over the entire surface of the wing. The response to these measurements will direct actuators, which will function like the bird’s wing “muscles.” Just as a bird instinctively uses different feathers on its wings to control its flight, the actuators will change the shape of the aircraft’s wings to continually optimize flying conditions. Active flow control effectors will help mitigate adverse aircraft motions when turbulent air conditions are encountered.
>link