068.R55. Lazer SuperSkin

Skin biomimicry applied to helmet design.
With over 80% of fatal motorcycle accidents due to head trauma, rotational head injury is currently seen as the greatest cause of brain damage or death for motorcyclists involved in road accidents. Manufactured by Lazer Designs and designed by U.K.-based Industrial Design Consultancy (IDC), a new helmet design promises to protect cyclists by simulating the way the human skull protects itself from rapid rotational injury.
The new helmet, named SuperSkin, tackles this directly using a special new technology that mimics nature’s own simple design – skull and skin. Superior in design compared to standard helmets, stringent tests show that the SuperSkin product design reduces rotational impact by an unprecedented 50% and the subsequent possibility of brain damage by 67.5%…

060.R47. Control Estructural. Biomimética

La imagen superior muestra un diagrama de vector del cactus sin paredes celulares bajo la presión interna extrema. La mayor deformación está sobre la zona central de las costillas, ya que ellos tienen el área más amplia y son los más flexibles.
La imagen debajo es el cactus con las paredes celulares bajo la misma presión. Esta imagen no muestra la misma deformación, porque casi toda la tensión está siendo absorbida por la resistencia a la torsión de las paredes celulares.
Por lo tanto, la importancia de la estructura celular del Echinocactus Grusonii es determinante en el funcionamiento estructural de la planta, demostrando que la función primaria de las costillas es el control de la expansión y no el apoyo estructural.

059.R46. Solar Biomimicry

The flexible photovoltaics below not only capture the sun’s energy, but the flexibility of these photovoltaics permits energy to be collected from motion. The idea is taken from leaves moving in the wind. From the Copenhagen Institute of Interaction Design. After all, thousands of years of evolution can’t be wrong: if a more efficient design for gathering solar energy lay in developing huge slabs (see most existing solar panels installed on houses these days), trees ought to produce a single huge leaf! However, as trees very elegantly demonstrate, there are multiple forces at work in nature beyond the mandate to collect solar energy.

056.R43. Shape Memory Polymers

What is Shape Memory Polymer?
Shape memory polymer (SMP) has only been around for a couple of decades. It has applications from deploying objects in space to manufacturing dynamic molds. Unlike shape memory alloys, SMP exhibits a radical change from a normal rigid polymer to a very stretchy elastic and back on command, a change which can be repeated without degradation of the material. The “memory,” or recovery, quality comes from the stored mechanical energy attained during the reconfiguration and cooling of the material.

053.R40. Morphing Structures

WHY? Morphing or shape changing structures can actively change their geometry in order to better adapt to exterior loading or to increase performance.
Nature is full of examples of morphing structures. Unlike a mechanism, which consists of stiff elements joined by kinematic links and actuated by exterior power sources, a morphing structure achieves its shape changing abilities from within, i.e. without the need for an external mechanism.
HOW? The aim is to develop structures that can change shape and can increase their surface area either through external or embedded actuation. The design challenge is that on one hand these structures need to carry loads i.e. must be stiff. Whilst on the other hand, to keep actuation forces reasonable, the structures must be compliant to allow easy deformation. This contradiction cannot be easily resolved with currently available materials.
Deployable structures e.g. rollable, foldable, inflatable and nested structures.
Extreme anisotropic materials e.g. corrugated structures, segmented structures.
Variable stiffness materials e.g. shape memory, flexible matrix composites.

052.R39. Aerospace Vehicle

Aircraft of the future will not be built of traditional, multiple, mechanically connected parts and systems. Instead, aircraft wing construction will employ fully-integrated, embedded “smart” materials and actuators that will enable aircraft wings with unprecedented levels of aerodynamic efficiencies and aircraft control.
Able to respond to the constantly varying conditions of flight, sensors will act like the “nerves” in a bird’s wing and will measure the pressure over the entire surface of the wing. The response to these measurements will direct actuators, which will function like the bird’s wing “muscles.” Just as a bird instinctively uses different feathers on its wings to control its flight, the actuators will change the shape of the aircraft’s wings to continually optimize flying conditions. Active flow control effectors will help mitigate adverse aircraft motions when turbulent air conditions are encountered.

049.R36 Material invisible

Así es, un grupo de científicos de la Universidad de Berkeley y del Lawrence Berkeley Laboratory (California) ha desarrollado un metamaterial que hace posible que objetos tridimensionales puedan permanecer invisibles.
Un metamaterial es aquel material artificial que presenta propiedades electromagnéticas inusuales. Propiedades que son adquiridas por su estructura diseñada y no por su composición.
Gracias a la nanotecnología se ha podido fabricar este particular material.  Su funcionamiento aparentemente sencillo, consisten en desviar los haces de luz. Estos incidirían sobre el objeto fabricado con este tipo de material o  mas bien recubierto de una fina película de este compuesto, y nos permitiría ver lo que hay detrás de él. Los haces de luz al incidir en dicho objeto, teniendo en cuenta que este tipo de metamateriales tiene un indice de refracción negativo, la luz no sería ni absorbida ni reflejada sino que rodearía el objeto. Es decir se “doblaría” alrededor del objeto volviendo al otro lado de este en la misma dirección en la que comenzaron. Con lo que conseguiríamos ver lo que hay detrás de él.