019.radiation vs. illumination/views

2.4.4. Radiation vs. Illumination/Views
· Three major sources of radiation: Solar Wind coming from the Sun’s direction, Cosmic Rays coming from all directions, Solar Flares and Coronal Mass Ejection coming from the Sun in punctual storms.
· Protection to Solar Wind and Cosmic Rays can be achieved by a 30cm thickness of Martian regolith; water tanks or materials with large amounts of hydrogen.
· Solar Flares and Coronal Mass Ejections will need specific shelters.
· Illumination and views can be achieved with special windows with 7cm water thickness, by creating water mirror surfaces that reflect light or by assuming a future development of radiation shielded plastics.

RES5

018.abrasion vs. illumination/views

2.4.3. Abrasion vs. Illumination/Views
· Wind storms are common and carry Martian dust at speeds up to 100km/h.
· Protection to abrasion is to be considered avoiding “soft” materials on the external layers.
· Windows should have mobile protections in order to open or close them when necessary.

RES6

016.gravity vs. indoor pressure

2.4.1. Gravity vs. Indoor Pressure
· Gravity is about 38% of Earth’s.
· Atmospheric pressure is very low while indoor areas will be pressurized at 60kPa, meaning a high pressure difference between conditioned indoors and outdoors.
· The major structural problem for a conditioned space on Mars is holding the inside pressure, even though the buildings should also stand on without inside pressure during their construction or in case of an accidental loss of pressure.
· The best shapes to stand inside pressure are cylindrical and spherical as they homogenously distribute pressure on their perimeter.

RES1